
The VLDB Journal
DOI 10.1007/s00778-015-0404-3

REGULAR PAPER

S3-TM: scalable streaming short text matching

Fuat Basık1 · Buğra Gedik1 · Hakan Ferhatosmanoğlu1 · Mert Emin Kalender1

Received: 2 October 2014 / Revised: 14 August 2015 / Accepted: 15 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Micro-blogging services have become major
venues for information creation, as well as channels of infor-
mation dissemination. Accordingly, monitoring them for
relevant information is a critical capability. This is typically
achieved by registering content-based subscriptions with the
micro-blogging service. Such subscriptions are long-running
queries that are evaluated against the stream of posts. Given
the popularity and scale ofmicro-blogging services likeTwit-
ter and Weibo, building a scalable infrastructure to evaluate
these subscriptions is a challenge. To address this challenge,
we present the S3-TM system for streaming short text match-
ing. S3-TM is organized as a stream processing application,
in the form of a data parallel flow graph designed to be run on
a data center environment. It takes advantage of the structure
of the publications (posts) and subscriptions to perform the
matching in a scalable manner, without broadcasting pub-
lications or subscriptions to all of the matcher instances.
The basic design of S3-TM uses a scoped multicast for pub-
lications and scoped anycast for subscriptions. To further
improve throughput, we introduce publication routing algo-
rithms that aim at minimizing the scope of the multicasts.
First set of algorithms we develop are based on partition-
ing the word co-occurrence frequency graph, with the aim
of routing posts that include commonly co-occurring words
to a small set of matchers. While effective, these algorithms
fell short in balancing the load. To address this, we develop
the SALB algorithm, which provides better load balance by
modeling the load more accurately using the word-to-post
bipartite graph. We also develop a subscription placement
algorithm, called LASP, to group together similar subscrip-

B Fuat Basık
fuat.basik@bilkent.edu.tr

1 Computer Engineering Department, Bilkent University,
Ankara, Turkey

tions, in order to minimize the subscription matching cost.
Furthermore, to achieve good scalability for increasing num-
ber of nodes, we introduce techniques to handle workload
skew. Finally, we introduce load shedding techniques for
handling unexpected load spikes with small impact on the
accuracy. Our experimental results show that S3-TM is scal-
able. Furthermore, the SALB algorithm provides more than
2.5× throughput compared to the baseline multicast and out-
performs the graph partitioning-based approaches.

Keywords Short text matching · Stream processing ·
Publish/subscribe

1 Introduction

Micro-blogging has enjoyed wide adoption among Internet
users and became a popular formof communication. Services
like Twitter and Weibo enable users to create and share short
updates to the public or to a selected groupof contacts.Micro-
blog posts, known as tweets, are up to 140 characters in length
and short in comparison with regular blog posts. Users of
these services can subscribe to the posts of other users, which
is known as following a user. The content of a post is irrele-
vant to the subscription event and that means a user receives
all the posts from the users it follows, no matter what the
content is. In this respect, micro-blogging services resemble
the traditional topic-based publish/subscribe (pub/sub) sys-
tems [7], in which tweets correspond to publications and user
ids are analogous to topics.

Micro-blogging services also provide APIs for subscrib-
ing to streams of posts, where the matching is based on
the content. For instance, Twitter has a Streaming API [27],
which takes subscriptions in the form of a set of words and
delivers matching tweets in a streaming manner. This model

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0404-3&domain=pdf

F. Basık et al.

of service resembles the content-based pub/sub systems [7].
However, the backbone for this kind of service is typically
implemented within a data center [2], and not using bro-
kers over a wide-area network as in pub/sub systems [1,4,8].
Considering that the popularmicro-blogging services receive
hundreds of millions of posts per day, implementing this
matching in a scalable manner is a key requirement. In this
work, we present S3-TM–a stream processing-based solu-
tion to scalable short text matching under the content-based
subscription model. We develop effective techniques and
algorithms for publication routing and subscription place-
ment, which yield an overall scalable solution.

While current services are typically targeted toward a user-
centric flow of information, S3-TM provides the ability to
filter messages based on their content. An example usage
scenario would be subscribing to all micro-blog posts that
contain the words white and house together, rather than fol-
lowing the official White House micro-blog account. This
model can capture a broader range of relevant information,
with less effort on the part of the subscriber.

S3-TM is organized as a stream processing application in
the form of a data parallel flow graph designed to be run on
a data center environment. The system aims at parallelizing
the task of matching publications against the subscriptions.
For this purpose, it creates multiple instances of the matcher
module and performs smart routing to avoid broadcasting
publications or subscriptions to the matchers, so that scala-
bility can be achieved as the number of replicas is increased
in response to increasing volume of publications.

There are a number of challenges faced by S3-TM.

1.1 Publication routing

Thecore issue in achieving scalability for streaming short text
matching within a data center environment is the routing of
publications and placement of subscriptions to the machines
where the matching is to be performed. Previous attempts at
this have been limited to publication unicast—subscription
broadcast, publication broadcast—subscription unicast, or a
combination of these two fundamental approaches [2]. How-
ever, in order to achieve good scalability as theworkload (and
thus the number ofmachines) increases, we need to avoid any
kind of broadcast. To address this challenge, we take advan-
tage of the problem domain. In particular, the word-based
publications and subscriptions in micro-blogging enable us
to apply hashing to multicast (as opposed to broadcast)
publications to the machines responsible for matching the
words they contain. This way, subscriptions can be placed
on any one of the machines that are responsible for one of
the words forming the subscription. However, this brings an
additional challenge, which is to minimize the number of
machines a publication is multicast to, which we refer to as
the spread. To address this challenge, we develop effective

word partitioning algorithms (which replace the hashing-
based partitioning) that keep the spread low.

1.2 Load balancing

Another major obstacle to scalability is load imbalance. At
one extreme, one way to minimize spread is to assign all
words to a single machine. Obviously, this is the worst
case scenario for load balance. In general, there is a trade-
off between reduced spread and better load balance. To
address this challenge, we integrate load awareness into
our word partitioning algorithms. We develop several graph
partitioning-based solutions that work on the co-occurrence
frequency graph of words, where vertex and edgeweights are
used to create balanced partitions (words to be assigned to
machines). However, graph partitioning- based approaches
fell short, as they cannot accurately represent the load of a
partition as the sum of edge or vertex weights. Therefore,
we develop the SALB algorithm, which works on the word-
to-post bipartite graph, rather than the word co-occurrence
graph. SALB incorporates mechanisms to create a spread-
aware load-balanced word partitioning.

1.3 Subscription placement and matching

Theword partitioning-based routing leaves open the problem
of placing subscriptions tomachines, as a subscription can be
placed on any one of the machines that is responsible for at
least one of the words in it. Furthermore, given a number of
subscriptions assigned to a machine, publications need to be
matched efficiently against them. To solve the subscription
placement problem, we first model the load imposed on a
machine for handling the subscriptions placed on it, using
a trie-based subscription matching technique. We then use
this model to develop a placement algorithm that attempts
to minimize the load, while at the same time keeping the
load imbalance under control. Importantly, the subscription
placement algorithm is incremental by nature, making it easy
to admit streaming subscriptions.

1.4 Skew handling

While the SALB algorithm we introduce strives to balance
the load, as the number of machines keeps increasing, the
skew in the word frequencies starts inhibiting scalability. For
instance, when the load due to a particular hot word exceeds
the average load on a machine (average load reduces as the
number of machines increases), it becomes increasingly dif-
ficult to achieve good load balance. We solve this problem
by detecting hot words and applying a word splitting mecha-
nism, which is adaptive to the number of machines, to break
the hot words apart.

123

S3-TM: scalable streaming short text matching

1.5 Overload and load shedding

Finally, under unexpected spikes in load, such as during rare
events causing significant increase in post traffic, the stream-
ing textmatching service can experienceoverload.To address
this, we develop simple yet effective techniques to limit the
load, with little impact on thematching accuracy.We achieve
this by putting a hard limit on the spread and selectively mul-
ticasting posts based on the expected value of their words in
terms of the matching accuracy and the amount of load shed.

We evaluate S3-TM through an extensive experimental
study using real-world datasets. Our evaluation showcases
the system’s scalability, as well as the effectiveness of our
publication routing and subscription placement algorithms.
Weprovide insights about the behavior of the systemat differ-
ent scales, under different kinds of subscription workloads,
and for changing publication contents (concept drift). Our
results show that the SALB algorithm is the most effective
among all and can increase throughput by a factor of 2.5×
compared to a baseline multicast approach.

In summary, we make the following contributions:

• We present the S3-TM system for scalable streaming
short text matching, which relies on a distributed stream
processing architecture to run at scale in a data center
environment.

• We present algorithms for smart publication routing,
including variants based on partitioning of the word co-
occurrence graph and a novel algorithm called SALB that
uses the word-to-post bipartite graph to perform spread-
aware load-balanced word partitioning.

• We develop a subscription placement algorithm, called
LASP, that takes into account the trie-based matching to
minimize load, while at the same time preserving load
balance.

• We develop simple yet effective techniques to handle
skew in the publication workload, as well as load shed-
ding techniques to handle overload situations.

2 Architecture

In this section, we present the general architecture of the S3-
TM system, which is illustrated in Fig. 1. We mainly focus
on the scalable matching infrastructure that receives publica-
tions and subscriptions, and performs the matching between
the two. Publications are themicro-blogging posts, which are
treated as sets of words. An example is a tweet. Subscriptions
are continuous queries [14] that are long-running requests
to receive all publications that match a given monitoring
condition. Specifically, the monitoring condition is a set of
words. For instance, if a subscription is [“Obama,” “health”],

subscriptions
are anycast to

matchers

publications
are multicast to

matchers

Fig. 1 Overall architecture of the S3-TM system

123

F. Basık et al.

then any post that contains both of the words “Obama” and
“health” will be considered a match for this subscription.
The results for a subscription constitute a stream, and this
stream is delivered to the subscriber client that owns the sub-
scription, as new matches take place. We assume that the
publications arrive at a much higher rate compared to sub-
scriptions, which is typical in practice for micro-blogging
applications. As such, the system aims at maximizing the
publication processing throughput.

S3-TM is organized as a distributed data streamprocessing
application that runs on a data center withmultiplemachines.
The main flow of the application consists of two unique
stages, namely the Router and Placer stage and the Matcher
andDispatcher stage. These are shown in themiddle of Fig. 1.
The system is designed to scale via data parallel execution;
thus, there will be many copies of these stages, depending on
the scale of the deployment (dashed lines in the figure).

On the left-hand side of the figure, we see the clients of
the system: publishers and subscribers. We assume that each
client sends its publications and subscriptions to one of the
Router and Placer stages. This assignment can change at any
time, as any stage instance can handle any client request.
This kind of load balancing is typical for all large-scale
Internet services. Note that publications flow through the
system and are discarded once they are fully processed. The
subscriptions, on the other hand, are stored for performing
matches against future publications and are only removed
upon explicit request by the subscribers. On the right-hand
side of the figure, we see the subscribers again, which receive
their matching publications as a stream.

In what follows, we detail the two stages that constitute
the core of the scalable matching logic.

2.1 Router and Placer

This stage contains three operators within. The first one is
called the Receiver, which receives publications and sub-
scriptions from the clients. Recall that both publications and
subscriptions consist of words. The Receiver operator per-
forms stemming and stop word removal on both publications
and subscriptions. Publications are then forwarded to the
Publication Routing operator, whereas the subscriptions are
forwarded to the Subscription Placement operator.

The Publication Routing operator is responsible for mul-
ticasting each publication to a set of Matcher and Dispatcher
stages. It routes a publication to those stages that are responsi-
ble for one or more of the words contained in the publication.
As an optimization, only subscribedwords, that iswords con-
tained in at least one subscription, are used for the multicast.
For the purpose of routing, words are partitioned over the
Matcher and Dispatcher stages, such that for a given word,
there is one stage responsible for it. The default partitioning
policy is to hashwords to stages. This default scheme has two

undesirable properties. First, the spread of a hashing-based
approach can be high, as it does not take into account the
co-occurrence frequency of words. Ideally, words that com-
monly appear together should be assigned to the same stage.
Second, the words might exhibit high skew, as some words
are highly popular. Under skew, it becomes difficult for hash-
ing to maintain load balance. As a result, we develop several
alternative techniques for partitioningwords over stages. The
partitioning of words is kept as a mapping in memory as part
of the Router and Placer stage and is used by the Publication
Routing operator to quickly determine the target stages of a
multicast for a given publication. This mapping is computed
off-line and is kept as a read-only replicated copy inmemory.

The Subscription Placement operator is responsible for
anycasting each subscription to a set of Matcher and Dis-
patcher stages. A given subscription can be sent to any one
of the stages that are responsible for at least one of the words
in the subscription. For example, if a subscription is [x, y],
then the stage that is responsible for x , say S,would receive all
the publications that contain the word x . Since the subscrip-
tion is interested publications that contain both x and y, S is
capable of evaluating the subscription. Similarly, if stage P
is responsible for word y, it is also capable of evaluating the
subscription. As a result, anycasting the subscription to one
of the eligible stages is sufficient. The default anycast policy
is to send the subscription to one of the eligible Matcher and
Dispatcher stages at random. However, this policy suffers
from two problems as well. First, it may not balance the load
properly, as the set of eligible downstream stages is often
a subset of the entire set of Matcher and Dispatcher stages
and it is possible that this eligible set is skewed. Second, to
reduce load, we should group together similar subscriptions
as much as possible [2,11,13].

To address these issues, we develop subscription place-
ment algorithms that run as part of the Subscription Place-
ment operator. These algorithms use the word partitioning
information kept within the Router and Placer stage (as it
was used for publication routing as well), in addition to the
list of currently subscribedwords for each one of theMatcher
and Dispatcher stages. This latter information is updated as a
result of each subscription placement made, and the changes
are sent to all other Router and Placer stages. This is not a
performance bottleneck, as the subscription rate is expected
to be much lower compared to the publication rate.

2.2 Matcher and Dispatcher

This stage contains two operators within. These are the
Matcher and the Dispatcher operators. TheMatcher operator
is responsible for matching streaming publications against
the subscriptions placed at the stage. For this purpose, we use
a trie-based subscription organization,which takes advantage
of similar subscriptions assigned to the same stage to reduce

123

S3-TM: scalable streaming short text matching

the overall matching load. Finally, the dispatcher stage is
responsible for sending the matching publications to the sub-
scribers.

In a typical deployment, each stage corresponds to a
process that canbedistributed overmachines.Multiple stages
can be placed on a single machine as well, such as having
one stage per processor core. In what remains, we introduce
the techniques and algorithms used in publication routing,
subscription placement, and matching in more detail.

3 Publication routing

In this section, we formalize the problem of publication rout-
ing and present our solutions. The goal is to come up with
routing strategies that reduce spread and improve load bal-
ance. Reducing spread results in less load on the matchers,
whereas improving load balance results in better utilizing the
available resources. Both factors directly impact the through-
put.

3.1 Formalization

Let P ∈ P be a publication, which is a set of words. Here, P
denotes the set of all publications. Each word w ∈ P comes
from a domain of words W , where W = ⋃

P∈P P . We do
not make assumptions about the subscriptions until later in
Sect. 4, but we denote the set of subscribed words asWs . We
denote the number ofmatcher stage instances in the system as
N . Our goal is to learn a mapping M : W �→ [1 . . . N] that
maximizes the throughput. This mapping maps each word
to one of the matchers. The throughput, denoted by T (M)

for a given mapping, depends on the spread and the load
imbalance. We formalize these first and define throughput as
a function of them later.

3.1.1 Spread

Let R(M) denote the spread for a given mapping M . The
spread can be informally defined as the average number
of times a publication will be routed, that is the average
size of a publication multicast. Recall that a publication
is routed to a matcher iff the mapping M maps a sub-
scribed word w ∈ Ws contained in the publication P to
matcher i ; i.e., the publication P is routed to matcher i iff
∃ w ∈ (P ∩Ws) s.t. M(w) = i . We denote the set of match-
ers a publication P is routed to as K (P, M). Formally:

K (P, M) =
⋃

w∈P ∩Ws

{M(w)} (1)

Given this definition, we can formally define spread,
R(M), as follows:

R(M) =
∑

P∈P
|K (P, M)|/|P| (2)

3.1.2 Imbalance

We denote load imbalance as B(M) for a mapping M and
define it as the ratio of the maximum load on a matcher to
the average load. In a perfectly load-balanced system, the
imbalance will be 1. The worst case is when all the load is
on a single matcher, in which case the imbalance will be N ,
that is the number of matcher stage instances. Let us denote
the load imposed on a matcher i as L(i, M). Formally, we
have:

L(i, M) =
∑

P∈P

∑

w∈P

[w ∈ Ws ∧ M(w) = i] (3)

Here, [...] is the Iverson bracket that evaluates to 1 when the
Boolean condition it encloses is true, to 0 otherwise. It is
important to note that here we make a simplifying assump-
tion; that is, all publications impose an equivalent load of cost
1 unit on a matcher. We will revise this assumption when we
introduce subscriptions into the picture in Sect. 4.

With the definition of load imposed on a matcher at hand,
load imbalance, B(M), is easily formalized as:

B(M) = maxi∈[1...N](L(i, M))
∑

i∈[1...N] L(i, M)/N
(4)

3.1.3 Throughput

We can define throughput T simply as being proportional to
the inverse of the maximum load:

T (M) ∝ (maxi∈[1...N]L(i, M))−1 (5)

This is because in a data parallel streaming system with a
split, the throughput is bounded by the slowest branch due
to backpressure [23]. Let pi be the fraction of the publica-
tions sent to matcher i , and let C be the capacity of each
matcher. Assuming a unit cost of 1 for publication process-
ing, the throughput is bounded by C/(pi · 1). We have
pi = L(i, M)/|P|, and thus, we have:

T (M) = mini∈[1...N](C · |P|/L(i, M)) (6)

Equation 5 follows directly from Eq. 6 after removing the
constant terms.

WhileEq. 6 is useful to estimate the throughput of amatch-
ingM , during the learningof amapping, aswewill see later in
this section, a more flexible throughput estimation method is
required to avoid getting stuck at local maximas. Intuitively,
throughput can also be expressed in terms of spread and
imbalance. In particular, throughput is inversely proportional

123

F. Basık et al.

to spread, since the load on the system increases linearly with
the spread. If we consider load imbalance, we see that max-
imum load appears as the nominator, so the throughput is
also inversely proportional to the load imbalance. Thus, we
can formulate an estimate throughput, denoted by T̂ (M), as
follows:

T̂ (M) ∝ (R(M) · B(M))−1 (7)

The final problem can be formalized as finding the best
mapping M∗ that maximizes the throughput; that is M∗ =
argminMT (M) or, alternatively, as argminM T̂ (M).

In the remaining of this section, we develop techniques
to learn an effective mapping M . First, we introduce several
alternatives based on partitioning the word co-occurrence
graph. Then we introduce the greedy SALB algorithm that
makes use of the word-to-publication bipartite graph. In all
approaches, we assume that the system starts with the sim-
ple hash-based routing. After an initial training period, the
publications data collected so far is analyzed to generate the
new mapping M , and the routing is updated to use it.

While not updating the mapping on-the-fly might seem
like a drawback, our evaluation in Sect. 6.4 shows that
frequent mapping updates are not required to keep the
throughput high. Adding more servers would require recom-
putation of the mapping M as well. Thus, changes in the
number of servers can be coincided with the periodic map-
ping updates.

It isworthmentioning that themappingM maynot contain
mappings for every possible word we may see in the future.
Even though we haveW = ⋃

P∈P P , a new publication that
arrives to the system after M has been learned may contain a
new word. For such words, we fall back to the default policy
of hash-based multicast.

Also note that the same mapping M is used by all the
Router and Placer instances. Recall that any Router and
Placer can handle any publication or subscription. Fur-
thermore, publications and subscriptions are assigned to
Receivers uniformly at random. Thus, one can consider each
Router and Placer to instance be observing a sampled subset
of the publications and subscriptions. This motivates using
the same mapping for all Router and Placer instances. This
requires mapping M to be replicated to all instances. Since
the size of the mapping is limited by the number of words,
it is compact enough to fit into the main memory (typically
less that 200K words, where only the word id is kept, taking
less than 2MBs).

3.2 Word network partitioning

The word network partitioning algorithms construct a map-
ping M by partitioning the set of words W over the N
matchers. Themain intuition is to placewords that frequently

appear together in publications into the same partition, while
at the same time balancing the load incurred on each parti-
tion. We map this problem to a traditional graph partitioning
one, where the words are the vertices and the edges are the
co-occurring words. Let us represent this undirected graph as
G(W, E) and refer to it as the word network. We define the
edge set as E = {(w1, w2) | w1, w2 ∈ W ∧ f (w1, w2) > 0}.
Here, f (w1, w2) is the co-occurrence frequency of the words
w1 and w2. Thus, any two words that appear together in at
least one publication is represented as an edge in the word
network. We have:

f (w1, w2) = |{P | {w1, w2} ⊆ P ∧ P ∈ P}|/|P|.

The co-occurrence frequencies serve as the edge weights.
We also define the frequency of a word as f (w) = |{P |
w ∈ P ∈ P}|/|P|. The word frequencies serve as the vertex
weights.

Graph partitioning algorithms are well studied in the lit-
erature [22] with well-established implementations, such as
Metis [12]. These algorithms aim at minimizing the edge
cut, defined as the total weight of the edges that go across
partitions. This matches our goal of co-locating commonly
co-occurring words within the same partition. It is easy to
see that such a partitioning will reduce the spread, as sev-
eral words within a publication will be mapped to the same
matcher, reducing the size of the multicast. However, we
also need to maintain the load balance. Graph partitioning is
able take into account load balance as well. Yet, the load is
expressed as vertex or edge weight sums. Unfortunately, it
is not possible to express the processing load, as defined in
Eq. 3, using such a sum. Thus, we investigate several alter-
native graph partitioning approaches that differ in how load
balancing is formulated, all of them being heuristics.We also
look at simple partitionings that serve as baselines. Figure 2
gives an overview of these alternatives, which are further
detailed below:

3.2.1 Cut minimization (gC), Fig. 2a

This is a baseline partitioning that does not consider load
balancing. It aims atminimizing the cut, using an unweighted
word network. Thus, any pair of words that appear at least
once together would contribute the same amount toward the
total cut.

3.2.2 Co-frequency cut minimization (gFC), Fig. 2b

This is another baseline approach that does not perform
load balancing. However, it considers the co-occurrence fre-
quencies when minimizing the cut. Thus, words that appear
commonly together are expected to be placedwithin the same
partitions as much as possible. Since this baseline does not

123

S3-TM: scalable streaming short text matching

(a) (b)

(c) (d)

Fig. 2 Word network partitioning algorithms: a cut minimizing (gC),
b co-frequency cut minimizing (gFC), c co-frequency cut minimizing,
frequency load balancing (gFCL), d co-frequency cut minimizing, nor-
malized frequency, and co-frequency load balancing (gNFCL)

consider load balance, and since load balance and spread are
at odds, we expect gFC to provide a very low (good) spread
and a high imbalance.

3.2.3 Co-frequency cut minimization, frequency load
balancing (gFCL), Fig. 2c

This is one of the two graph partitioning-based algorithms
that are contenders. Similar to gFC, it minimizes the co-
occurrence frequency-based cut. Differently, it tries to main-
tain load balance as well. Load for a partition is defined as
the sum of the vertex loads, where the vertex load is defined
as the word frequency. The downside of this approach is that
it overestimates the partition load. As a simple scenario, con-
sider a small partition that contains three words that always
appear together in publications. In this case, the overall par-
tition load will be three times the correct value. The real load
depends on the number of publications routed to the parti-
tion, which is lower than the sum of the word frequencies for
that partition, due to co-occurrences.

3.2.4 Co-frequency cut minimization, normalized frequency,
and co-frequency load balancing (gNFCL), Fig. 2d

This partitioning approach improves upon gFCL by trying
to compensate for the overestimation of the partition load.
Since using the word frequency as the vertex load results in
overestimation, it uses a normalized vertex load for com-
puting the overall partition load. Specifically, it uses the
vertex load formulation l(w) = f (w)

1+ fn(w)/ f (w)
, where fn(w)

is the sum of co-occurrence frequencies for the word w.

That is, fn(w) = ∑
(w,w′)∈E f (w,w′). To understand the

logic behind this normalization, let us consider two extreme
cases. In one extreme case, a word may always appear by
itself in publications. In this case, we have fn(w) = 0,
and thus, l(w) = f (w). This is the correct load contribu-
tion to the partition for word w. As another extreme, we
can consider a similar example from the gFCL discussion,
that is k words that always appear together in all publica-
tions. In this case, we have l(w) = f (w)/k, since we have
fn(w) = (k−1) · f (w). The total load of the k words would
be f (w), which is again correct. Despite these nice features,
there are many scenarios for which the partition load is not
exact. As a result, this is just a heuristic too, albeit one that
is more accurate than gFCL.

Once the word network partitioning is performed, the
results are easily converted into a global mappingM bymap-
ping each word in a partition to the matcher associated with
that partition.

3.3 SALB: spread-aware load balancing

The SALB algorithm aims at explicitly modeling the notion
of load, rather than relying on some approximation of it as
done by the word network partitioning-based approaches.
With a more accurate model of load, it better balances it
across matchers. However, a good load balance does not
necessarily imply a low overall load, since words are not
independent and to achieve low average load one needs to
co-locate commonly co-occurring words. This latter can be
achieved by trying to minimize spread. Accordingly, SALB
tries to minimize both imbalance and spread. Note that this
also matches with our intuition of approximate throughput
as expressed in Eq. 7.

The SALBalgorithm is given inAlgorithm1. It is a greedy
algorithm that assigns words to matchers one-by-one. It con-
siders words in decreasing order of appearance frequency
(f (w) for w ∈ W). Frequent words are assigned a map-
ping first, as this provides additional flexibility to balance
the load later. For each word, each matcher is considered as
a candidate mapping and the one with the highest utility is
picked as the one to be added to the mapping. The process
continues until all words are assigned a mapping. The utility
used for picking the best among all matchers is defined as
spread times load imbalance times−1 (making higher values
better), where spread and imbalance are computed as if the
candidate mapping is already applied.

To compute the spread and load imbalance incrementally
as words are assigned to matchers, we first build a bipartite
graph G(W,P, E), where W is the set of words and P is
the set of publications. There is an edge (w, P) in E if and
only if the word w is contained in the publication P , that is
w ∈ P . We use nbrG(w) to denote the set of neighbors of the

123

F. Basık et al.

Alg. 1: SALB, Spread-Aware Load Balancing
Data: P , set of publications
Data: N , number of matchers
Result: M , word to matcher mapping
M ← {} Initialize the mapping
R ← 0 Initialize the spread
∀i∈[1...N], Li ← 0 Initialize loads
W ← ⋃

P∈P P Collect words
 Form the word-to-publication bipartite graph
G(W,P, E) s.t. E = {(w, P) | w ∈ W ∧ P ∈ P ∧ w ∈ P}
for w ∈ W in desc. order of f (w) do For each word

u∗ ← −∞ Initialize utility for the best mapping
l∗ ← 0 Initialize delta load for the best mapping
k ← 0 Initialize the best mapping index
for i ∈ [1 . . . N] do For each matcher

 Compute the extra load w brings to matcher i
l ← ∑

P∈nbrG (w) [�w′∈P s.t. M(w′) = i]
r ← R + l/|P| Compute spread
L ← ⋃

j∈[1...N]\{i}{L j } ∪ {Li + l} Union loads

b ← √
var(L)/avg(L) Compute imbalance

u ← −r · b Compute utility
if u > u∗ then If a better mapping

u∗ ← u Update the best utility
l∗ ← l Update the delta load
k ← i Update the best mapping

Lk ← Lk + l∗ Update the load of the matcher
R ← R + l∗/|P| Update the spread
M(w) ← k Add the new mapping

return M Return the constructed mapping

word w in graph G, i.e., the set of publications that contain
the word w.

Consider a candidate mapping of word w to matcher
i . In order to compute the new spread and imbalance
incrementally, a key quantity we need to compute is the
additional load this mapping will introduce on the matcher.
This amount is denoted via l in the algorithm. We have
l = ∑

P∈nbrG (w) [�w′∈P s.t. M(w′) = i]. That is, we find
all publications that contain the wordw (i.e., P ∈ nbrG(w)),
and for each such publication P , we add 1 to the load if the
publication does not contain any other word that is already
mapped to matcher i (i.e., �w′∈P s.t. M(w′) = i). Given
this quantity, we can incrementally compute the new spread
by adding l/|P| to the existing spread, as l gives the increase
in the number of publications that are routed as a result of
adding a new mapping.

Recall that we define utility in terms of spread times
imbalance.Wealreadydiscussedhowspread is incrementally
updated. Similarly, we update the load imbalance incremen-
tally. For imbalance, we use a slightly different formulation
than the ratio of maximum load to average load. Using the
maximum term in the formulation results in a highly insen-
sitive metric during the initial iterations of the algorithm, as
mappings to matchers other than the one that changes the
maximum load make a very small impact. Thus, as an imbal-
ance metric, we use coefficient of variance of the matcher

loads. Since we have computed the extra load brought by the
new mapping, that is l, we can easily come up with the new
set of loads on thematchers. This is denoted as the setL in the
algorithm. Then the imbalance is given by

√
var(L)/avg(L),

which is the standard deviation of the loads divided by the
average load (aka. coefficient of variance). The normaliza-
tion via the average load is included in the formulation (the
denominator), since different candidate mappings may result
in different total loads.

Complexity. The outer loop of the algorithm iterates |W |
times, and the inner loop iterates |N | times. Assuming there
are k words per publication on average and there are d publi-
cations containing aword on average, the inner loop performs
O(d ·k+N) operations. The N part comes from the computa-
tion of the imbalance. In practice, both variance and average
can be computed incrementally, yet for brevity we have not
shown that in the algorithm. So the inner loop’s body can
complete in O(d · k) time. This results in an overall com-
plexity of O(d · k · N · |W |). We know that k is a small
constant irrespective of dataset size, so we can represent the
complexity simply as O(d · N · |W |). The average num-
ber of publications a word appears in is bounded by |P|, so
an even simpler time complexity formula can be given by
O(N · |P| · |W |), even though this bound will be rather loose.
Also note that we can add the log |W | · |W | term that comes
from the sorting, but this is not necessary as the other mul-
tiplicative terms in front of |W | are larger than log |W | in
practice.

Our experimental results show that SALB algorithm per-
forms favorably in terms of the running time compared to
graph partitioners on large datasets.

4 Subscription matching and placement

The default policy used for placing subscriptions onmatchers
is to anycast them to one of the eligible matchers. Let S be
a subscription, which is a set of words. We denote the set of
eligible matchers as B(P, M) under a given mapping M and
define it as B(P, M) = {i | ∃ w ∈ S s.t. M(w) = i}. This
policy is suboptimal as it does not attempt to group together
similar subscriptions and doing so can significantly reduce
the load. However, in order to do such a grouping, we need
a better understanding of the matching process.

4.1 Matching

We perform the matching using a trie data structure. We sort
each subscription before it is inserted into the trie, so that its
words are in lexicographic order. The trie takes advantage
of common prefixes within the subscriptions. Each trie node
has zero or more child nodes, each associated with a word,

123

S3-TM: scalable streaming short text matching

Alg. 2: LASP, Load-Aware Subscription Placement
Data: S, subscription to be placed
Data: N , number of matchers
Data: M , word to matcher mapping
Data: H , subscription word map
Result: k, the matcher where the subscription is placed
u∗ ← −∞ Initialize utility for the best placement
k ← 0 Initialize the matcher for the best placement
B(P, M) = {i | ∃w ∈ S s.t. M(w) = i} Eligible ones
for i ∈ B(P, M) do For each eligible matcher

l ← f (|S\H(i)|) Compute subs. delta load
 Union all load lists
L ← ⋃

j∈{1...N }\{i}{ f (|H(j)|)} ∪ { f (|S ∪ H(i)|)}
b ← √

var(L)/avg(L) Compute imbalance
u ← −l · b Compute utility
if u > u∗ then If a better mapping

u∗ ← u Update the best utility
k ← i Update the best placement

H(i) ← H(i) ∪ S Update subscription word map
return k The matcher for the best placement

and a potentially empty list of subscriptions. For trie nodes
that have large number of children, the child nodes are kept
in a hash table. We make use of these hash tables for fast
search. For instance, the root node has as many children as
there are unique start words in sorted subscriptions.

When a publication is to be matched against the set of
subscriptions stored in a trie, we do a scoped traversal of
the trie. During the traversal, a child node is visited if and
only if its associated word is in the publication. To check
this, we probe the child hash table using the set of words in
the publication. Since our publications are short, this is quite
efficient. Note that, during the traversal, for any visited trie
node we are guaranteed that all the words up to the root are
in the publication. Thus, whenever a trie node is visited, any
subscriptions associated with it are added to the result.

4.2 Load-Aware Subscription Placement

For placing subscriptions, we introduce an algorithm called
Load-Aware Subscription Placement, LASP for short. The
LASP algorithm is executed within the Subscription Place-
ment operator as part of theRouter andPlacer stage instances.
Any stage instance can place any subscription. To facilitate
this, we keep a replicated data structure called the sub-
scription word map, denoted as H . For each matcher i , the
subscription word map contains the set of unique words that
appear in subscriptions assigned to that matcher, denoted as
H(i). This structure is potentially updated every time a new
subscription is placed. Since the subscription rate is much
lower than the publication rate, propagating updates regard-
ing the changes on this structure is cheap. Alternatively, this
structure can be kept centralized.

The LASP algorithm, given in Algorithm 2, is structured
similar to the SALB algorithm’s inner loop. It iterates over

Fig. 3 Number of lookup ops

all possible placements, each corresponding to placing the
subscription on one of the eligiblematchers. For each eligible
matcher (i ∈ B(P, M)), it computes a utilitymetric andpicks
the one with the highest utility as the matcher to place the
publication on. The utility is defined as the increase in the
subscription load of the matcher times the load imbalance
times −1 (making higher values better).

Subscription load is proportional to the cost of matching
a publication against the set of subscribers placed on the
matcher.Wemake a simplifying assumptionhere:Weassume
that the matching cost (represented via the f function in the
algorithm) is linear in the number of unique words in the
trie. This assumption is motivated by the observation that the
higher amount of overlap in the subscriptions reduces the
size of the trie, which is equal to the number of unique words
in it (|H(i)| for matcher i).

Figure 3 plots the number of operations performed in our
trie implementation as a function of the number of unique
words, using the workload setup described in Sect. 6. We fit
a linear line on this graph and employ it as the f function
used by the LASP algorithm.

5 Extensions

In this section, we present extensions to the base S3-TM
system to solve two problems commonly encountered in
practice, namely skew in publication workload and unex-
pected spikes in load.

Skew in word frequencies causes high load imbalance and
results in limited scalability. The skew becomes more pro-
nounced when the number of machines increases, as the load
brought by a single word on a matcher may exceed the aver-
age load per machine. By handling skew via the help of a
word splitting mechanism that is adaptive to the number of
machines used, we reach near-linear scalability.

A micro-blogging service may experience unexpected
load spikes, often due to a sudden mass reaction from the
user base. Without any special mechanism, these spikes may
result in randomly dropping incoming publications, signifi-
cantly reducing the match quality. We develop load shedding
techniques that aim at minimizing the impact of load spikes
on match quality.

123

F. Basık et al.

5.1 Skew handling

When scaling up to large number of nodes, load imposed by
some of the words might exceed the average load of a node.
Such hot words cause skew, since proposed algorithms have
the limitation that any given word can be assigned to only a
single matcher. Our initial experiments showed that SALB
scales linearly up to 64 nodes with many of the real-world
tweet datasets. After 64 nodes, linear scalability is lost, and
after 128 nodes, no additional speedup is achieved.

To handle skew, we first find the average aggregate word
frequency a node should handle. Since SALB tries to bal-
ance the load across nodes while keeping the spread low,
having a word with frequency higher than the average fre-
quency causes increased load imbalance. Therefore, we limit
each word to have at most frequency equal to the half of the
aggregate frequency a node should handle. As a result, a sin-
gle word can only account for half of a node’s even share
of load. If a word does not satisfy this condition due to high
frequency, we split the word into versions, until the condition
is satisfied. If a word is split into k versions, then that word
is replaced with a random version in range [0 . . . k) when it
is encountered within a publication. This effectively reduces
the load a single word can incur on a matcher.

This leaves us one last problem; that is, how to place sub-
scriptions that contain one of the hot words. There are three
types of subscriptions with respect to the hot words: (i) those
that do not contain any of the hotwords, (ii) those that contain
both hot and regular words, and (iii) those that contain only
hot words. For the first category (no hot words), no change is
required during subscription placement. For the second cate-
gory (both hot and regular words), since the LASP algorithm
already selects the least frequent words during placement,
hot words are eliminated already and subscription is anycast
to one of the nodes that are responsible for a regular word
from the subscription. Finally, for the last category (all hot
words), the hot word with the least frequency is selected and
the subscription is multicast to all nodes that are responsi-
ble for a version of the selected hot word. The multicast is
needed, becausemultiple nodesmaybe handling the different
versions of the selected hot word. Luckily, the third category
of subscriptions is small in size.

Splitting words into versions is performed during the
learning phase. It impacts both the creation of the map-
ping used for routing and the assignment of subscriptions
to machines. When the learning phase is repeated, the map-
ping is updated and the subscriptions are replaced.

5.2 Load shedding

Micro-blogging services may experience unexpected spikes
in load due to mass reaction from the users to rare and note-
worthy world events. In such scenarios, the input publication

rate may exceed the maximum throughput that can be han-
dled by the system.This requires shedding some load to avoid
lengthy delays and eventual random dropping of the publi-
cations.

There are two aspects to load shedding in streaming sys-
tems [25]: How much load to shed and what load to shed.
The former typically changes as the workload and resource
availability varies, and as such, requires an adaptive solution.
In what follows, we first describe how we resolve the ‘what’
question, and then we describe the adaptive load shedding
technique we use to handle the spikes in load (the “how”
question).

5.2.1 What load to shed

The most straightforward way to shed load is to randomly
drop publications. An alternative and more effective way is
to limit the number of matchers they are multicast to. This
reduces the spread, and thus load. We perform load shedding
by limiting the maximum number of matchers a publication
is routed to, say m. If the publication at hand has more than
m target matchers it ideally should be routed to, then we only
route it to them matchers that have the highest utility metric.
We use two such metrics:

• Consensus shedding: Forward to the matchers with the
highest number of publication words mapping to them.
The main idea is to reduce the number of publication
words for which forwarding is not performed, as this may
improve the overall match quality.

• Subscription shedding: Forward to thematchers that con-
tain the highest number of subscriptions for the words in
the publication. The main idea is to minimize the impact
of load shedding on the match quality, as the publica-
tion is routed to matchers that are more likely to produce
matches.

5.2.2 How much load to shed

The Publication Routing operator keeps a buffer of publi-
cations. When a new publication is received, it is enqueued
into this buffer. A separate thread pulls publications from
this buffer and routes them to the matchers. The overload is
detected when the buffer is full. The size of the buffer, say
b, can be adjusted based on the latency requirements of the
system.

We perform dynamic load shedding by making use of this
buffer. In particular, we extend it with two additional seg-
ments, resulting in a total of three segments. The front of the
buffer is called the ideal segment, which represents the ideal
mode of operation in terms of the buffer fullness. The next
segment is called the stable segment, and the one following
it is called the overload segment. The idea is that the sys-

123

S3-TM: scalable streaming short text matching

tem will increase the level of load shedding when the buffer
fullness is in the overload segment, and reduce the level of
load shedding when the buffer is in the ideal segment. No
changes will be made when in the stable segment. The goal
of the stable segment is to avoid oscillation.

We define lowest shedding level as l = 0, which corre-
sponds tom = ∞. Level l = 1 corresponds tom = k, where
k is 7 based on our experimentation (see Sect. 6). Each suc-
cessive level has m decreased by �, such as m = k − � and
m = k − 2 · � for l = 2 and l = 3, respectively. � could
be less than 1, which corresponds to probabilistic forwarding
for the last word selected for forwarding.

Let bi and bs be the sizes of the ideal and the stable
segments. We have b = bs + bi , and we ensure that the sys-
tem operates such that the overload segment is avoided via
increasing the shedding level. One important point is that we
need to avoid oscillation in the system. In particular, the sys-
tem should not jump from the ideal segment into the overload
segment as a result of a single level reduction in the shedding
level. We achieve this by adjusting the ratio r = bi/bs . Let
us represent the load in the system for shedding level l as
L(l). Modeling the system as a queueing one and applying
Little’s Law, we say that the queue length is proportional to
the input rate times the processing time (roughly inverse of
the load level). This gives the following inequality:

(bs + bi)/bs > L(l − �)/L(l), ∀l (8)

This ensures that reducing the load shedding level never takes
the buffer fullness from the ideal segment to the overload
segment. We have:

r = 1 − max
l

L(l)/L(l − �) (9)

We also need to ensure that the system does notmove from
the overload segment to the ideal segment when the shedding
level is increased. That condition is already satisfied by Eq. 9.
Finally, the L function is easily computed experimentally, as
we will show in Sect. 6.5.

It is important to note that we may increase (decrease)
the load shedding level due to being in the overload (ideal)
segment, yet when the next adaptation time comes, we might
still be in the same segment. In this situation, we continue
to decrease (increase) the load shedding level if and only if
the buffer fullness level has not went down (up) since the
last adaptation time. Given this, we can set the adaptation
period low, conservatively. In our system, we set the adapta-
tion period to 1 second.

6 Experimental evaluation

In this section, we evaluate the scalability and performance
of the S3-TM system, with a particular focus on the effective-

ness of our publication routing and subscription placement
algorithms. The evaluation includes five sets of experiments.
Thefirst set of experiments studies scalability, presentingper-
formance as a function of the number of nodes. The second
set studies subscription awareness, presenting performance
as a function of the number of subscriptions. The third set
studies concept drift, that is how the performance of the sys-
tem is impacted by the temporal changes in the contents
of the publications. The fourth set studies the efficacy of
the load shedding algorithms. Finally, the last set of experi-
ments studies the learning time of alternative algorithms used
for learning the word to matcher mapping. In most of our
experiments, we make use of the spread, load imbalance,
and throughputmetrics. All experiments are performed using
tenfold cross-validation, and error bars showing the standard
deviation are included in the plots.

Thewordnetworkpartitioning-based algorithmsmakeuse
of Metis 5.1.0 [12] for graph partitioning. In contrast, the
SALB algorithm does not make use of graph partitioning.
Mallet [15] implementation of Latent Dirichlet Allocation
(LDA) [3] is used for creating topic-based subscriptions, as
we will detail later.

The S3-TM system is implemented in Python. We use
CPython 2.7 series for learning the word to matcher mapping
and PyPy 2.7 series (which includes a JIT) for runtime sub-
scription matching. All experiments are executed on Linux
machineswith 2 IntelXeonE55202.27GHzCPUs and48GB
of RAM per machine. In the rest of this section, we use the
term node to refer to a core on a machine. Since we go up to
256 nodes and since each machine has 12 cores in total, we
use 1 to 24 machines, depending on the experimental setup.

6.1 Experimental workload

Experiments are performed using two different datasets,
details of which are shown in Table 1. Both datasets con-
tain public tweets in the English language, collected using
the Twitter Streaming API [27]. These tweets are used for
learning the word to matcher mapping. Before learning, we
perform preprocessing, including cleaning, stemming, and
stop word removal. Cleaning involves removing any non-
word tokens (numbers are kept), links starting with the word
“http,” words starting with @ (screen names), and punctua-

Table 1 Properties of the attributes in the learning corpus

Datasets ⇒ April 2013 Sparse

Of tweets (sampled) 979,442 979,442

Of words (sampled) 100,310 198,887

Total word freq. (sampled) 3,874,826 10,190,479

Of word pairs (sampled) 5,507,437 7,559,671

Of tweets (unsampled) 9,791,543 10,467,110

123

F. Basık et al.

(a) (b)

Fig. 4 Word frequencies

tions. Each word is stemmed using Porter’s algorithm [18].
Stop word removal is performed based on a common stop
words list taken from the Mallet library.

The first dataset consists of tweets we collected in April
2013.Weused randomsampling to create a learning corpus of
around 1 million tweets. The learning corpus contains about
100 thousand unique words after preprocessing. Counting
multiple occurrences of those words, there are around 3.8
million word occurrences and those words create 5.5 million
pairs.

The second dataset is a publicly available tweet dataset
called Sparse [6]. We also sampled this dataset to create a
learning corpus of around 1 million tweets. The learning cor-
pus contains about 200 thousand unique words, 10.2 million
total word occurrences, and 7.6 million word pairs. Figure 4
shows theword frequency distributions of the learning corpus
we extracted from the two datasets.

The motivation behind using a learning corpus of size
1 million tweets is the following. The effectiveness of the
word to matcher mapping is impacted by the frequent words,
and it is sufficient to capture those words with a sample of
size 1 million. However, increasing the learning corpus size
unnecessarily significantly increases the learning time (see
Sect. 6.6). To verify the sampling claim, we used the Sparse
dataset to measure the impact of increasing the learning cor-
pus sample size on the throughput. The results are depicted
in Fig. 6. We observe that increasing the learning corpus size
beyond 0.5 million brings diminishing returns in terms of
throughout. The main intuition behind this is that only words
with a significantly high frequency are important enough to
impact the spread and load balance. As such, a sample of 1
million tweets is as good as 10 million for the purpose of
learning.

We generated the subscriptions using two alternative
methods. The first one is called tweet-based subscriptions
and the second one is called topic-based subscriptions. To
create tweet-based subscriptions, we pick random tweets
from the dataset and register them as subscriptions to the
system. To create topic-based subscriptions, we model the
interests of the users. Specifically, we created a topic extrac-
tor using LDA [3] implementation of the Mallet library. We
extracted 100 topics from each dataset. For each topic, we

selected 5 words related to it. Alpha and beta parameters
of LDA are set to 0.1, which is the Mallet default. Since
the length of the subscriptions may show variability, we
used a Zipf distribution to decide how many predicates a
subscription contains. Each subscription selects one topic,
decides its length using a Zipf distribution with a skew
parameter of 0.5, and gets that number of words from the
topic at random. Shortest publication contains a single word
and the longest contains 5 words. Overall, the tweet-based
model represents the scenario where we have relatively long
subscriptions, with low popularity, whereas the topic-based
model represents the scenario where we have relatively short
subscriptions, with high popularity.

In the rest of this section, we present our experimental
results. For brevity, we use the April 2013 dataset for the
throughput, spread, and load imbalance experiments, as the
results from the other dataset are very similar. For the relative
throughput experiments, we use the average values computed
using both datasets.

6.2 Scalability

We look at the spread, load imbalance, and throughput as a
function of the number of nodes in the system.Here, the num-
ber of nodes corresponds to the number of matcher instances,
which is the number of cores in our system. We also plot the
relative throughput, where we take the throughput achieved
using the matching learned via the SALB algorithm as 1 and
report the throughput of the alternative approaches relative
to that. The geometric mean of the relative throughputs from
both datasets is used. The number of subscriptions used for
this set of experiments is 100 thousand.

Figure 5a, e plots the relative throughput tweet- and topic-
based subscriptions, respectively. We observe that SALB
performs up to 130 and 150% better than the baseline
hash-based routing, for tweet- and topic-based subscrip-
tions, respectively. Overall, for topic-based subscriptions the
improvement relative to hashing is more lasting as the num-
ber of nodes increases.

Our main concern is the throughput of the system, and
Fig. 5b plots it as a function of the number of nodes, which
ranges from 2 to 256. We observe that gC and gFC per-
form more than an order of magnitude worse than the best
approach, so they are not contenders. For the remaining algo-
rithms, we see close to linear scalability up to 128 nodes.
After 128 nodes the throughput starts to decrease, except for
SALB. We observe that SALB provides the best throughput
and scalability, where gFCL and gNFCL are second, with
the former being slightly better than the latter, and hash-
based routing is the last. The results for the topic-based
subscriptions, shown in Fig. 5f, are even more pronounced.
In particular, for a 256 node system, SALB provides 2.56
times better throughput than the baseline hash-based routing

123

S3-TM: scalable streaming short text matching

a b c d

e f g h

Fig. 5 Relative throughput (a), throughput (b), spread (c), load imbalance (d), tweet-based subscriptions. Relative throughput (e), throughput (f),
spread (g), load imbalance (h), topic-based subscriptions

Fig. 6 Throughout versus the learning corpus size

and 2.2 times better throughput than the gFCL and gNFCL
approaches.

Figure 5c plots the spread of the routed publications using
the tweet-based subscription model. Note that the minimal
spread value that can be achieved is 1. We observe that as
the number of nodes increases, the spread increases as well,
but the rate of increase decreases and eventually the line flat-
tens. This is expected, as we know that the spread is bounded
by the maximum number of words in a publication. We also
observe that the cut-based graph partitioning algorithms that
do not care about load balance (gC and gFC) provide the low-
est spread. This is because these algorithms place frequently
co-occurring words to the same matchers. But as we will
see soon, the load imbalance of these algorithms will result
in poor throughput, which is the ultimate metric we care
about. The graph partitioning approaches that consider load
(gFCL and gNFCL) provide lower spread than the hashing-
based routing and SALB algorithms. SALB provides slightly
lower spread than hashing, but higher than that of gFCL and
gNFCL. Interestingly, as the number of nodes in the system

increases, the spread converges to the same number for gFCL
and gNFCL, yet hashing and SALB converge to a slightly
higher spread.

Figure 5g plots the spread for the topic-based subscription
model. The results are similar, with a few notable differences.
First, the spread ismuch lower in general, not crossing 2. Sec-
ond, the spread difference between the hashing-based routing
and SALB is much smaller. Since non-subscribed words are
not forwarded to matcher nodes, we observe that spread of
the topic-based subscriptions are much lower than the tweet-
based ones. As we will see shortly, the story is quite different
for load imbalance.

Figure 5d plots the load imbalance using the tweet-based
subscription model. We observe that gC and gFC approaches
suffer a very high load imbalance, and as we will later
observe in throughput experiments, this imbalance causes
their throughput to be non-competitive. The SALB algorithm
provides the best load imbalance among all. The hash-based
routing has imbalance values that aremostly between those of
gFCL/gNFCL and SALB. As the number of nodes in the sys-
tem increases, the imbalance of hashing gets closer to that of
gFCL/gNFCL and eventually passes it. This is because for a
skewed workload, load balancing becomes increasingly dif-
ficult with more nodes. We also observe that gNFCL has
slightly higher imbalance than gFCL. Despite considering
load balance explicitly, both of these algorithms still fall short
in balancing the load and SALB has six and four times better
lower imbalance in an eight-node configuration compared
to gNFCL and gFCL, respectively. As the number of nodes
reach higher values, like 256, the difference between load
imbalance values gets smaller, but SALB still performs the
best.

123

F. Basık et al.

a b c d

e f g h

i j k l

Fig. 7 Relative throughput (a), throughput (b), spread (c), load imbalance (d), tweet-based subscriptions. Relative throughput (e, i), throughput
(f, j), spread (g, k), load imbalance (h, l), topic-based subscriptions

Figure 5h plots the load imbalance for the topic-based
subscription model. The results are very similar. The load
imbalance is higher in general for topic-based subscriptions,
but its rate of increase with increasing number of nodes is
lower. Also, for topic-based subscriptions, gFCL has slightly
higher imbalance than gNFCL (reversed from tweet-based
subscriptions).

6.3 Subscription awareness

We look at the spread, load imbalance, and throughput as
a function of the number of subscriptions in the system. We
experimentwith number of subscriptions that range from100
to 10 million. The number of nodes is fixed to 16 for this set
of experiments. We perform experiments with both tweet-
based and topic-based subscriptions. It is important to note
that for tweet-based subscriptions, registering 107 random
tweets gets close to an all-words-subscribed system, which
is the worst case scenario for the S3-TM architecture. This
is a highly unlikely scenario in a real-world system, and we
use it as a stretch test.

Figure 7a, e plots the relative throughput, for tweet- and
topic-based subscriptions, respectively. For the tweet-based
subscriptions, SALB provides 15% better throughput com-

pared to gFCL and gNFCL, and 10% better throughput
compared to gFCL, until 10 thousand and 100 thousand
tweet-based subscriptions, respectively. Scaling to 10 mil-
lion tweet-based subscriptions, SALB still outperforms other
approaches. As wementioned earlier, at this point the system
converges to an all-words-subscribed system andminimizing
spread becomes critically important. As we have seen from
most of the experiments so far, SALB is better at minimiz-
ing load imbalance than minimizing spread. That being said,
the all-words-subscribed scenario is highly unlikely to be
encountered in practice.We also observe that with increasing
number of tweet-based subscriptions, the performance of the
hash-based routing degrades. For topic-based subscriptions,
SALB provides 22 and 18% better throughput compared to
gNFCL and gFCL, and 42% better throughput compared to
hashing, respectively.

Figure 7b, f plots the throughput for tweet- and topic-based
subscriptions, respectively. For tweet-based subscriptions,
there is an almost linear decrease in the throughput until
1 million subscriptions, whereas for topic-based subscrip-
tions, the rate of throughput reduction quickly diminishes
after 10 thousand subscriptions. The latter can be easily
explained by the high amount of overlap across the subscrip-
tions for the topic-based model. The former can be explained

123

S3-TM: scalable streaming short text matching

by the reverse, that is low overlap among the tweet-based
subscriptions. This effect shows the importance of the LASP
algorithm for grouping together similar subscriptions.

For both subscription models, SALB algorithm outper-
forms the alternatives. The gap between the SALB algorithm
and hashing initially increases as the number of subscrip-
tions increases. Interestingly, for tweet-based subscriptions
the gap continues to widen, whereas for topic-based ones
it stabilizes. SALB outperforms hashing by more than 4.2
times and 1.42 times for tweet- and topic-based subscrip-
tions, respectively. For tweet-based subscriptions, SALB is
only marginally better than gFCL and gNFCL, whereas for
topic-based subscriptions the difference is more pronounced.

Figure 7c, g plots the spread for the tweet- and topic-based
subscriptions, respectively. Likewise, Fig. 7d, h plots the
load imbalance for the tweet- and topic-based subscriptions,
respectively. In general, we observe relationships between
the different alternatives as before. SALB has markedly bet-
ter load imbalance than other alternatives, whereas gFCL
and gNFCL have better spread than SALB. SALB’s spread
is slightly better than hashing for tweet-based subscrip-
tions, but for topic-based subscriptions their spread is the
same (lines overlap in the figure). The spread increases with
increasing number of subscriptions, but with a decreasing
rate that diminishes quickly. The load imbalance increases
with increasing number of subscriptions, but again with a
decreasing rate that diminishes eventually. SALB keeps its
load imbalance advantage across the range, havingup to 3.3×
lower imbalance than the hashing approach for the tweet-
based subscriptions and 1.7× lower for the topic-based ones.

6.4 Concept drift

Figure 7i–l plots relative throughput, throughput, load imbal-
ance, and spread as a function of time. Time corresponds to
the number ofweeks passed since the learningwas performed
using the word to matcher mapping. We use the tweets from
week 0 to build the word to matcher mapping and use it
for evaluating the performance for the following weeks. We
report average metrics for 5-week intervals to reduce noise.
For this set of experiments, 100 thousand topic-based sub-
scriptions were used. To be able to track the concept drift of
subscriptions as well, for each week we extracted new topics
and created a new subscription set.

We observe that the throughput is markedly higher for
week 0. This is expected, as the model is specifically built
for the that week, and certain amount of overfitting exists.
The throughput decreases by a factor of 2 after the first week,
and Fig. 7k, l shows that this is due to both the increase in
the spread and the load imbalance. However, the increase
in load imbalance is sharper for all contender approaches.
Even though the increase in imbalance is most steep for
SALB, it still has better imbalance compared to all others,

a b

Fig. 8 a Accuracy and amount of load shed. b Input rate and shedding
level

andwe observe fromFig. 7i, j that it maintains the throughput
advantage over other approaches across the entire time range.
Importantly, while there is an initial decrease in throughput
after week 0, there is no decreasing trend afterwards. This
can be explained by the nature of the spoken languages. Irre-
spective of the current topics of interest, there is a common
structure of the spoken language that makes certain words
appear together and learning that structure is sufficient to
achieve better scalability and throughput.

6.5 Load shedding

Figure 8a plots the accuracy of matching (on the left y-axis
using solid lines) as well as the percentage of load shed (on
the right y-axis using dashed lines), as a function of the
load shedding threshold (the maximum number of matcher
instances a publication is forwarded to). Accuracy is defined
as the fraction of the correctmatches produced by the system.
Note that performing load shedding cannot result in super-
fluous matches, but only missing matches. As we decrease
the shedding threshold, the accuracy initially decreases by a
small amount. But as the shedding threshold gets smaller, the
rate of decrease in the quality increases. In general, the shape
of the quality curve is friendly to load shedding. However,
the curve for the percent of load shed is not as friendly. This
is because the amount of load shed is low for large thresholds
and the rate of increase is initially slow when the threshold
is high and increases later as the threshold gets smaller. Still,
the load shedding is effective. For instance, it is possible to
shed close to 25% of the load, while still maintaining 90%
accuracy. Among the two load shedding approaches we have
proposed, that is subscription shedding and consensus shed-
ding, the former is more effective, as it can provide higher
accuracy for the same amount of load shed.

Figure 8b plots the input throughput (tweets/sec, on the
left y-axis using solid lines) as well as the load shedding
levels (on the right y-axis using dashed lines), as a function
of time. Increased load shedding level implies a lower shed-
ding threshold. Note that, this experiment does not start from
time 0, since we wait for the buffer that holds the publica-
tions to stabilize. Also, in this experiment, we display the
throughput and load shedding values for a single Router and

123

F. Basık et al.

Placer machine. Starting with 16 thousand publications per
second input rate, at time 500 we increase the input through-
put to 32 thousand, and at time 1000 we decrease it down to 2
thousand. After time 1500, we again go back to 16 thousand
publications per second. Using this setup, we show how the
shedding level adapts to the changes in the input throughput.

We observe that the change in the shedding level shows
a similar pattern with the changes in the input rate, but it
is often shifted toward right. This delayed reaction is due
to the buffering effect and is more pronounced when the
buffer is full (overloaded scenario). For instance, at time 500,
the buffer is not full, and the sudden increase in throughput
quickly fills up the buffer and takes us to the overload seg-
ment. As a result, the algorithm quickly adapts and increases
the shedding level to 7 (one below the maximum of 8). How-
ever, when there is a very sharp decrease in input rate at time
1000, it takes a longer time for the shedding level to come
down. This is because of the large buffer size we use. It takes
time for the already buffered publications to be processed.
Eventuallyweget to the ideal region, and the shedding level is
lowered. The buffer size can be adjusted based on the latency
that could be tolerated. For small buffer sizes, the time it will
take for us to lower the shedding level will be shorter.

6.6 Learning time

Figure 9 plots the time it takes to build the word to matcher
mapping from the training dataset, as a function of the num-
ber of publications in the dataset. It is important to note
that the graph partitioning-based algorithms make use of the
Metis library, which is a highly optimized C implementation.
The SALB algorithm, on the other hand, is a Python imple-
mentation. As a result, here we want to focus more on the
trend, rather than the absolute numbers. We observe that the
rate of increase in the amount of time it takes for SALB to
create the mapping is lower compared to graph partitioning-
based approaches and after 1 million tweets, SALB starts to
take less time. For 1 million tweets, which is the number we
have used in all our experiments, it takes around a minute
for graph partitioning approaches to compute the mapping
and around two minutes for SALB. For 10 million tweets,

Fig. 9 Learning time

the number raises to around 4 hours for SALB and slightly
higher for the graph partitioning-based approaches.

6.7 Discussion

In summary, our experimental evaluations show that:

– Theword tomatcher mapping created by the SALB algo-
rithm is effective in increasing the throughput of short text
matching compared to hashing, by as much as 2.5 times.

– SALB works better than word network partitioning-
based solutions, due to its ability to balance the load,
in addition to reducing the spread. The word network
partitioning approaches fail at the former.

– To achieve scalability for large number of nodes, popular
words causing high skew need to be handled via splitting.

– Under extreme load, smart load shedding techniques can
be used together with SALB to provide graceful degra-
dation in matching quality.

7 Related work

We discuss prior work related to S3-TM with an emphasis
on pub/sub systems as well as matching and filtering tech-
niques. S3-TM is relevant to content-based publish/subscribe
systems, as it evaluates monitoring queries (subscriptions)
against micro-blog posts (publications). Matching and filter-
ing are relevant too, as one of the core components of S3-TM
is the comparison of publications and subscriptions to detect
matches.

7.1 Publish/subscribe (pub/sub) systems

Pub/sub systems can be classified into topic based and con-
tent based, depending on the matching model. Much early
work on pub/sub was topic based, wherein the messages
are filtered based on a single topic string (e.g., TIBCO [26],
Scribe [5]). Content-based pub/sub systems are more expres-
sive. They use subscriptions in the form of a set of predicates
and evaluate them against the entire contents of the pub-
lications [7,17]. In this work, we use a variation of the
content-based matching model. The key difference from the
classical pub/sub work is that our predicates in the subscrip-
tions are just words. We take advantage of this structure by
making intelligent content-based routing andplacement deci-
sions in order to achieve scalability.

7.2 Wide-area network pub/sub systems

PADRES [8], SIENA [4], CORONA [19], HERMES [17],
and GRYPHON[1] are well-known examples of distributed
content-based pub/sub middleware that use broker overlays.

123

S3-TM: scalable streaming short text matching

For instance, PADRES employs a network of brokers and
clients to implement pub/sub functionality. Similarly, SIENA
is developed as a distributed general-purpose event notifica-
tion system that is composed of interconnected servers over
a wide-area network. Apart from these systems, there also
exist systems performing content-based data dissemination
in the context of data streams, such as SemCast [16] and [9].
Compared to these works, we focus on pub/sub within a
data center environment. Our system does not use brokers
and instead contains multiple router and matcher operators,
organized into a pipeline of data parallel stages. However,
the fundamental idea behind content-based routing is valid
in our approach as well. Different than the classical pub/sub
problem, we have knowledge about the characteristics of the
publication data and exploit it to optimize the routing.

7.3 Tightly coupled pub/sub systems

StreamHub [2], Cobra [20], and S3-TM are pub/sub systems
that are designed to be run within a data center. We refer
to them as tightly coupled pub/sub systems, where scalabil-
ity and high throughput are the main concerns. StreamHub
resembles to our work in terms of its architectural design.
However, it treats publications as black boxes during rout-
ing, and as a result, are limited to publication broadcast and
subscription unicast, vice versa, or a two-level system where
the broadcast/unicast roles are switched between the publi-
cations and subscriptions at successive levels. Just like the
StreamHub, Cobra is also designed to be run within a data
center. Cobra resembles our work in terms of the goal of
the matching, as they match subscriptions to RSS feeds,
enabling users to make content-based filtering and aggre-
gation. While application-level goals of Cobra are similar
to our work, the architectural design is different in terms of
data parallelism. Cobra has a three-tiered architecture with
crawlers, filters, and reflectors. Subscriptions are assigned to
filters, and matched data are polled by the users via reflec-
tors. Crawlers collect RSS feeds and send those to filters.
However, since Cobra assumes publications as black box like
StreamHub, crawlers are limited to broadcasting feeds to all
filters. In contrast to StreamHub and Cobra, we take advan-
tage of the short text matching problem domain to avoid the
broadcast. Most importantly, our work focuses on optimiza-
tion of the routing and placement decisions based on the
contents of the publications and subscriptions, which is not
covered by earlier work.

7.4 Filtering and matching

The processing heavy core of pub/sub systems involve the
filtering and matching of publications against subscriptions.
State-of-the-artmatching algorithms for pub/sub systems fall
into one of the two main categories, namely counting-based

algorithms [4,28] and tree-based algorithms [1,10,21]. A
counting-based algorithm maintains the number of predi-
cates satisfied for each subscription. A tree-based algorithm
organizes subscriptions as a search tree, where each node
contains a predicate and each leaf has a set of subscriptions.
S3-TM uses a tree-based subscription matching algorithm as
well. In our case, the search tree is a trie structure in which
subscriptions can be placed within internal nodes as well.

In a recent work on matching, Shraer et al. proposed an
architecture to maintain the top-k tweets relevant to a news
story [24]. In their architecture, the matching between a sub-
scription and a publication is achieved by computing a score
between the contents of the two with respect to relevance
and recency. This architecture limits the subscriptions to a
small set of news stories. We have a different model, where
subscriptions are set of words queries and matching is based
on strict containment, rather than similarity.

Delta [11] is a pub/sub system where subscriptions are
reorganized and rewritten to achieve low latency in matching
and low resource utilization for scaling up to large numbers
of subscriptions. The subscriptions are conjunctives as in our
work, but they take the form of more general predicates. The
system is designed considering the fact that subscriptions
often overlap partially or completely. This is an assumption
we also make use of. However, the authors focus mainly
on reorganizing the subscriptions for efficient processing
via linear programming techniques, and not on optimizing
routing or placement. Our work is focused on the latter chal-
lenges and relies on a mostly traditional trie-based matching
algorithm, which can be easily replaced with more advanced
alternatives like delta.

8 Conclusion

In this paper, we presented S3-TM–a system for scalable
streaming short text matching. S3-TM is designed to be run
in a data center environment to evaluate high-throughput,
streaming publications in the formof short posts against large
number of standing subscriptions in the form of set of query
terms. S3-TM is organized as a data parallel streaming appli-
cation that contains many instances of routing and matching
stages. A core insight of our work is that the matching can be
parallelized by using a partitioning of words over matchers.
This way, publications can be multicast to a subset of rele-
vant matchers and subscriptions can be anycast to a subset of
eligiblematchers.We developed several algorithms to learn a
mapping that canminimize the size of the multicasts and bal-
ance the load across the matchers. Among these, the SALB
algorithm that relies on the word-to-post bipartite graph has
proven to be the most effective in practice. Our experimen-
tal results show that the co-occurrence relationship between
words can indeed make the word partitioning-based routing

123

F. Basık et al.

a scalable and effective solution, resulting in more than 2.5
times higher throughput compared to a baseline approach.
S3-TM also showcases good scalability. As part of this work,
we have also developed a load-aware subscription place-
ment algorithm called LASP and experimentally showed its
effectiveness in taking advantage of overlap structure among
subscriptions. Finally, we have introduced extensions of the
base system to handle skew in the publication workload to
acheive better scalability, and simple yet effective techniques
for load shedding to handle unexpected spikes in load.

Acknowledgments This study was funded in part by The Scientific
Technological Research Council of Turkey (TÜBİTAK) under grants
EEEAG #111E217 and #112E271.

References

1. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra,
T.D.: Matching events in a content-based subscription system. In:
ACMSymposiumonPrinciples ofDistributedComputing (PODC)
(1999)

2. Barazzutti, R., Felber, P., Fetzer, C., Onica, E., Pineau, J.F., Pasin,
M., Rivière, E., Weigert, S.: Streamhub: a massively parallel archi-
tecture for high-performance content-based publish/subscribe. In:
ACM International Conference on Distributed Event-based Sys-
tems (DEBS), pp. 63–74 (2013)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J.
Mach. Learn. Res. 3, 993–1022 (2003)

4. Carzaniga,A., Rosenblum,D.S.,Wolf,A.L.:Design and evaluation
of a wide-area event notification service. ACM Trans. Comput.
Syst. 19(3), 332–383 (2001)

5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.:
Scribe: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE J. Sel. Areas Commun. 20(8), 1489–1499
(2006)

6. Choudhury, M.D., Lin, Y.R., Sundaram, H., Candan, K.S., Xie,
L., Kelliher, A.: How does the data sampling strategy impact the
discovery of information diffusion in social media? In: AAAI Con-
ference on Weblogs and Social Media (ICWSM) (2010)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The
many faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–
131 (2003)

8. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The padres dis-
tributed publish/subscribe system. In: International Conference on
Feature Interactions in Telecommunications and Software Systems
(FIW) (2005)

9. Gedik, B., Liu, L.: Quality-aware distributed data delivery for
continuous query services. In: ACM International Conference on
Management of Data (SIGMOD) (2006)

10. Kale, S., Hazan, E., Cao, F., Singh, J.P.: Analysis and algorithms
for content-based event matching. In: International Workshop on
Distributed Event-Based Systems (DEBS), pp. 363–369 (2005)

11. Karanasos, K., Katsifodimos, A., Manolescu, I.: Delta: Scalable
data dissemination under capacity constraints. VLDB Endow.
(PVLDB) 7(4), 217–228 (2013)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–
392 (1998)

13. Li,M., Ye, F., Kim,M., Chen, H., Lei, H.: Bluedove: A scalable and
elastic publish/subscribe service. In: IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1254–1265
(2011)

14. Liu, L., Pu, C., Tang,W.: Continual queries for internet scale event-
driven information delivery. IEEE Trans. Knowl. Data Eng. 11(4),
610–628 (1999)

15. McCallum, A.K.: MALLET: A machine learning for language
toolkit (2002). http://mallet.cs.umass.edu

16. Papaemmanouil, O., Çetintemel, U.: SemCast: Semantic multi-
cast for content-based stream dissemination. In: IEEE International
Conference on Data Engineering (ICDE), pp. 37–42 (2004)

17. Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed event-based
middleware architecture. In: IEEE International Conference on
Distributed Computing Systems (ICDCS), pp. 611–618 (2002)

18. Porter, M.F.: An algorithm for suffix stripping. Program: electronic
library and information systems pp. 313–316 (1997)

19. Ramasubramanian, V., Peterson, R., Sirer, E.G.: Corona: a high
performance publish-subscribe system for the world wide web. In:
USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI) (2006)

20. Rose, I., Murty, R., Pietzuch, P., Ledlie, J., Roussopoulos, M.,
Welsh, M.: Cobra: Contentbased filtering and aggregation of blogs
and rss feeds. In: USENIX Conference on Networked Systems
Design and Implementation (NSDI), pp. 3–3 (2007)

21. Sadoghi, M., Jacobsen, H.A.: Be-tree: an index structure to effi-
ciently match boolean expressions over high-dimensional discrete
space. In: ACM International Conference on Management of Data
(SIGMOD), pp. 637–648 (2011)

22. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1),
27–64 (2007)

23. Schneider, S., Hirzel, M., Gedik, B., Wu, K.L.: Safe data paral-
lelism for general streaming. IEEE Trans. Comput. (2013). doi:10.
1109/TC.2013.221

24. Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.: Top-k
publish-subscribe for social annotation of news. VLDB Endow.
(PVLDB) 6(6), 385–396 (2013)

25. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack,M., Stonebraker,
M.: Load shedding in a data stream manager. In: Very Large Data-
bases Conference (VLDB), pp. 309–320 (2003)

26. TIBCO Inc., Tib/rendezvous. White Paper (1999)
27. Twitter Streaming API. http://dev.twitter.com/docs/streaming-

apis. Retrieved Dec (2013)
28. Yan, T., Garcia-Molina, H.: Index structures for selective dis-

semination of information under the boolean model. ACM Trans.
Database Syst. 19(2), 332–364 (1994)

123

http://mallet.cs.umass.edu
http://dx.doi.org/10.1109/TC.2013.221
http://dx.doi.org/10.1109/TC.2013.221
http://dev.twitter.com/docs/streaming-apis
http://dev.twitter.com/docs/streaming-apis

	S3-TM: scalable streaming short text matching
	Abstract
	1 Introduction
	1.1 Publication routing
	1.2 Load balancing
	1.3 Subscription placement and matching
	1.4 Skew handling
	1.5 Overload and load shedding

	2 Architecture
	2.1 Router and Placer
	2.2 Matcher and Dispatcher

	3 Publication routing
	3.1 Formalization
	3.1.1 Spread
	3.1.2 Imbalance
	3.1.3 Throughput

	3.2 Word network partitioning
	3.2.1 Cut minimization (gC), Fig. 2a
	3.2.2 Co-frequency cut minimization (gFC), Fig. 2b
	3.2.3 Co-frequency cut minimization, frequency load balancing (gFCL), Fig. 2c
	3.2.4 Co-frequency cut minimization, normalized frequency, and co-frequency load balancing (gNFCL), Fig. 2d

	3.3 SALB: spread-aware load balancing

	4 Subscription matching and placement
	4.1 Matching
	4.2 Load-Aware Subscription Placement

	5 Extensions
	5.1 Skew handling
	5.2 Load shedding
	5.2.1 What load to shed
	5.2.2 How much load to shed

	6 Experimental evaluation
	6.1 Experimental workload
	6.2 Scalability
	6.3 Subscription awareness
	6.4 Concept drift
	6.5 Load shedding
	6.6 Learning time
	6.7 Discussion

	7 Related work
	7.1 Publish/subscribe (pub/sub) systems
	7.2 Wide-area network pub/sub systems
	7.3 Tightly coupled pub/sub systems
	7.4 Filtering and matching

	8 Conclusion
	Acknowledgments
	References

